Logo des Repositoriums
 

Overview of machine learning and data-driven methods in agent-based modeling of energy markets

dc.contributor.authorPrasanna, Ashreeta
dc.contributor.authorHolzhauer, Sascha
dc.contributor.authorKrebs, Friedrich
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:31Z
dc.date.available2019-08-27T12:55:31Z
dc.date.issued2019
dc.description.abstractLocal energy markets (LEM) allow prosumers and consumers to trade energy directly between each other and offer flexibility services to the grid. The benefits and challenges related to such markets need to be identified, and agent-based modeling (ABM) is a useful method to conduct simulation experiments with different market structures and clearing mechanisms. Machine learning (ML) and data-driven methods when integrated with ABM show great potential for constructing new distributed, agent-level knowledge. In this paper, we discuss the requirements for coupling ML methods and ABM. We also provide an overview of published literature on the common methods of integration of ML and data-driven methods in ABM of energy markets and discuss how these requirements are commonly addressed.en
dc.identifier.doi10.18420/inf2019_73
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25025
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjectmachine learning
dc.subjectagent-based modeling
dc.subjectlocal energy markets
dc.subjectreinforcement learning
dc.subjectload forecasting
dc.titleOverview of machine learning and data-driven methods in agent-based modeling of energy marketsen
dc.typeText/Conference Paper
gi.citation.endPage584
gi.citation.publisherPlaceBonn
gi.citation.startPage571
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleDigitalisierung des Energiesystems

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper6_06.pdf
Größe:
208.22 KB
Format:
Adobe Portable Document Format