Logo des Repositoriums
 

Digital weed reduction

dc.contributor.authorBurkhart, Sebastian
dc.contributor.authorNoack, Patrick
dc.contributor.editorHoffmann, Christa
dc.contributor.editorStein, Anthony
dc.contributor.editorRuckelshausen, Arno
dc.contributor.editorMüller, Henning
dc.contributor.editorSteckel, Thilo
dc.contributor.editorFloto, Helga
dc.date.accessioned2023-02-21T15:13:59Z
dc.date.available2023-02-21T15:13:59Z
dc.date.issued2023
dc.description.abstractIn an effort to reduce the usage of herbicides in herb cultivation, we discuss strategies to detect and eliminate toxic weeds, exemplified by Senecio vulgaris. This paper presents a method to classify plants based on their spectral characteristics utilizing hyperspectral imagery in the range between 400 nm and 1100 nm. We are able to remove background material by masking it automatically using the well-established NDVI and Otsu’s thresholding prior to classification. Based on a neural network, we correctly classify 93% of the leaf area from Senecio vulgaris even with a relatively low spectral resolution of 50 nm. Apart from data collection, all steps were implemented in open source software and the Python language using open source libraries.en
dc.identifier.isbn978-3-88579-724-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40262
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-330
dc.subjectweed reduction
dc.subjecthyperspectral imaging
dc.subjectspectroscopy
dc.subjectmachine learning
dc.titleDigital weed reductionen
dc.typeText/Conference Paper
gi.citation.endPage302
gi.citation.publisherPlaceBonn
gi.citation.startPage297
gi.conference.date13.-14. Februar 2023
gi.conference.locationOsnabrück

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL_2023_Burkhart_297-302.pdf
Größe:
1.54 MB
Format:
Adobe Portable Document Format