Logo des Repositoriums
 

Facial image reconstruction and its influence to face recognition

dc.contributor.authorFilip Pleško, Tomas Goldmann
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira, Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2023-12-12T10:46:48Z
dc.date.available2023-12-12T10:46:48Z
dc.date.issued2023
dc.description.abstractThis paper focuses on reconstructing damaged facial images using GAN neural networks. In addition, the effect of generating the missing part of the face on face recognition is investigated. The main objective of this work is to observe whether it is possible to increase the accuracy of face recognition by generating missing parts while maintaining a low false accept rate (FAR). A new model for generating the missing parts of a face has been proposed. For face-based recognition, state-of-the-art solutions from the DeepFace library and the QMagFace solution have been used.en
dc.identifier.isbn978-3-88579-733-3
dc.identifier.issn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43278
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-339
dc.subjectFace and gesture recognition
dc.subjectBiometric performance measurement; Biometric sample quality
dc.titleFacial image reconstruction and its influence to face recognitionen
dc.typeText/Conference Paper
mci.conference.date20.-22. September 2023
mci.conference.locationDarmstadt
mci.conference.sessiontitleFurther Conference Contributions
mci.reference.pages295-304

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
LNI_039.pdf
Größe:
2.03 MB
Format:
Adobe Portable Document Format