Logo des Repositoriums
 

Combining Programming-by-Example with Transformation Discovery from large Databases

dc.contributor.authorözmen, Aslihan
dc.contributor.authorEsmailoghli, Mahdi
dc.contributor.authorAbedjan, Ziawasch
dc.contributor.editorKai-Uwe Sattler
dc.contributor.editorMelanie Herschel
dc.contributor.editorWolfgang Lehner
dc.date.accessioned2021-03-16T07:57:10Z
dc.date.available2021-03-16T07:57:10Z
dc.date.issued2021
dc.description.abstractData transformation discovery is one of the most tedious tasks in data preparation. In particular, the generation of transformation programs for semantic transformations is tricky because additional sources for look-up operations are necessary. Current systems for semantic transformation discovery face two major problems: either they follow a program synthesis approach that only scales to a small set of input tables, or they rely on extraction of transformation functions from large corpora, which requires the identification of exact transformations in those resources and is prone to noisy data. In this paper, we try to combine approaches to benefit from large corpora and the sophistication of program synthesis. To do so, we devise a retrieval and pruning strategy ensemble that extracts the most relevant tables for a given transformation task. The extracted resources can then be processed by a program synthesis engine to generate more accurate transformation results than state-of-the-art.en
dc.identifier.doi10.18420/btw2021-16
dc.identifier.isbn978-3-88579-705-0
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/35799
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBTW 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-311
dc.titleCombining Programming-by-Example with Transformation Discovery from large Databasesen
gi.citation.endPage324
gi.citation.startPage313
gi.conference.date13.-17. September 2021
gi.conference.locationDresden
gi.conference.sessiontitleData Integration, Semantic Data Management, Streaming

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A3-22.pdf
Größe:
447.33 KB
Format:
Adobe Portable Document Format