Logo des Repositoriums
 
Konferenzbeitrag

Fast and Accurate Continuous User Authentication by Fusion of Instance-based, Free-text Keystroke Dynamics

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Keystroke dynamics study the way in which users input text via their keyboards, which is unique to each individual, and can form a component of a behavioral biometric system to improve existing account security. Keystroke dynamics systems on free-text data use n-graphs that measure the timing between consecutive keystrokes to distinguish between users. Many algorithms require 500, 1,000, or more keystrokes to achieve EERs of below 10%. In this paper, we propose an instancebased graph comparison algorithm to reduce the number of keystrokes required to authenticate users. Commonly used features such as monographs and digraphs are investigated. Feature importance is determined and used to construct a fused classifier. Detection error tradeoff (DET) curves are produced with different numbers of keystrokes. The fused classifier outperforms the state-of-the-art with EERs of 7.9%, 5.7%, 3.4%, and 2.7% for test samples of 50, 100, 200, and 500 keystrokes.

Beschreibung

Ayotte, Blaine; Banavar, Mahesh K.; Hou, Daqing; Schuckers, Stephanie (2019): Fast and Accurate Continuous User Authentication by Fusion of Instance-based, Free-text Keystroke Dynamics. BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-690-9. pp. 129-139. Regular Research Papers. Darmstadt, Germany. 18.-20. September 2019

Zitierform

DOI

Tags