A multi-talented datacube: integrating, processing and presenting big geodata for the agricultural end user
dc.contributor.author | Friedrich, Christoph | |
dc.contributor.author | Löw, Johannes | |
dc.contributor.author | Otte, Insa | |
dc.contributor.author | Hill, Steven | |
dc.contributor.author | Förtsch, Sebastian | |
dc.contributor.author | Schwalb-Willmann, Jakob | |
dc.contributor.author | Gessner, Ursula | |
dc.contributor.author | Schierghofer, Christoph | |
dc.contributor.author | Truckenbrodt, Sina | |
dc.contributor.author | Schonert, Eric | |
dc.contributor.author | Piernicke, Thomas | |
dc.contributor.author | Assmann, Denise | |
dc.contributor.author | Conrad, Christopher | |
dc.contributor.author | Thiel, Michael | |
dc.date.accessioned | 2024-04-08T11:56:34Z | |
dc.date.available | 2024-04-08T11:56:34Z | |
dc.date.issued | 2024 | |
dc.description.abstract | While scientific methods leveraging Earth Observation for agriculture are abundant, their actual application in Germany remains scarce. A key challenge in this context is to connect the end users to the data without the many technical obstacles. Therefore, we present a versatile platform that not only integrates and processes big geodata of highly diverse origin and type, but also provides access to these resources in ways that reflect the individual user’s requirements and expertise. Based on free and open-source software building blocks, our datacube facilitates scientific computation through R and Python environments or direct API access, including emergent technologies such as openEO, STAC, and COG. At the same time, the results are delivered to easy-to-use applications that adequately present them to non-technical experts. We detail the architecture of the system and demonstrate a use case serving computed plant vitality information directly to farmers in the field. | en |
dc.identifier.doi | 10.18420/giljt2024_36 | |
dc.identifier.isbn | 978-3-88579-738-8 | |
dc.identifier.issn | 2944-7682 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/43882 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | 44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft | |
dc.relation.ispartofseries | Lecture Notes in Informatics(LNI) - Proceedings, Volume P - 344 | |
dc.subject | analysis-ready data | |
dc.subject | cloud processing | |
dc.subject | interoperability | |
dc.subject | data access | |
dc.subject | user interfaces | |
dc.title | A multi-talented datacube: integrating, processing and presenting big geodata for the agricultural end user | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 256 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 251 | |
gi.conference.date | 27.-28. Februar 2024 | |
gi.conference.location | Stuttgart | |
gi.conference.review | full |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- GIL_2024_Friedrich_251-256.pdf
- Größe:
- 294.49 KB
- Format:
- Adobe Portable Document Format