Logo des Repositoriums
 

The Borda Social Choice Movie Recommender

dc.contributor.authorKastner, Johannes
dc.contributor.authorRanitovic, Nemanja
dc.contributor.authorEndres, Markus
dc.contributor.editorGrust, Torsten
dc.contributor.editorNaumann, Felix
dc.contributor.editorBöhm, Alexander
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorHärder, Theo
dc.contributor.editorRahm, Erhard
dc.contributor.editorHeuer, Andreas
dc.contributor.editorKlettke, Meike
dc.contributor.editorMeyer, Holger
dc.date.accessioned2019-04-11T07:21:28Z
dc.date.available2019-04-11T07:21:28Z
dc.date.issued2019
dc.description.abstractIn this demo paper we present a recommender system, which exploits the Borda social choice voting rule for clustering recommendations in order to produce comprehensible results for a user. Considering existing clustering techniques like k-means, the overhead of normalizing and preparing the preferred user data is dropped. In our demo showcase we facilitate a comparison of our clustering approach to the well known k-means++ with traditional distance measures.en
dc.identifier.doi10.18420/btw2019-31
dc.identifier.isbn978-3-88579-683-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/21717
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBTW 2019
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) – Proceedings, Volume P-289
dc.subjectClustering
dc.subjectk-means
dc.subjectBorda
dc.subjectSocial choice
dc.titleThe Borda Social Choice Movie Recommenderen
gi.citation.endPage502
gi.citation.startPage499
gi.conference.date4.-8. März 2019
gi.conference.locationRostock
gi.conference.sessiontitleDemonstrationen

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
E01-1.pdf
Größe:
228.11 KB
Format:
Adobe Portable Document Format