Logo des Repositoriums
 

A survey of datasets for computer vision in agriculture

dc.contributor.authorHeider, Nico
dc.contributor.authorGunreben, Lorenz
dc.contributor.authorZürner, Sebastian
dc.contributor.authorSchieck, Martin
dc.contributor.editorDörr, Jörg
dc.contributor.editorSteckel, Thilo
dc.date.accessioned2025-02-04T14:37:59Z
dc.date.available2025-02-04T14:37:59Z
dc.date.issued2025
dc.description.abstractIn agricultural research, there has been a recent surge in the amount of Computer Vision (CV) focused work. But unlike general CV research, large high-quality public datasets are sparsely available. This can be partially attributed to the high variability between different agricultural tasks, crops and environments as well as the complexity of data collection, but it is also influenced by the reticence to publish datasets by many authors. This, as well as the lack of a widely used agricultural data repository, are impactful factors that hinder research in applied CV for agriculture as well as the usage of agricultural data in general-purpose CV research. In this survey, we provide a large number of high-quality datasets of images taken on fields. Overall, we find 45 datasets, which are listed in this paper as well as in an online catalog on the project website: https://smartfarminglab.github.io/field_dataset_survey/.en
dc.identifier.doi10.18420/giljt2025_02
dc.identifier.eissn2944-7682
dc.identifier.isbn978-3-88579-802-6
dc.identifier.pissn2944-7682
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45677
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof45. GIL-Jahrestagung, Digitale Infrastrukturen für eine nachhaltige Land-, Forst- und Ernährungswirtschaft
dc.relation.ispartofseriesLecture Notes in Informatics(LNI) - Proceedings, Volume P - 358
dc.subjectdatasets
dc.subjectsurvey
dc.subjectComputer Vision
dc.subjectagriculture
dc.subjectfield
dc.subjectRGB
dc.titleA survey of datasets for computer vision in agricultureen
dc.typeText/Conference Paper
gi.citation.endPage46
gi.citation.publisherPlaceBonn
gi.citation.startPage35
gi.conference.date25/26. Februar 2025
gi.conference.locationWieselburg, Austria
gi.conference.reviewfull

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL_2025_Heider_35-46.pdf
Größe:
488.36 KB
Format:
Adobe Portable Document Format