Logo des Repositoriums
 

Lightweight Federated Learning Based Detection of Malicious Activity in Distributed Networks

dc.contributor.authorWöhnert, Kai Hendrik
dc.contributor.editorStolzenburg, Frieder
dc.date.accessioned2023-09-20T04:20:43Z
dc.date.available2023-09-20T04:20:43Z
dc.date.issued2023
dc.description.abstractIn an increasingly complex cyber threat landscape, traditional malware detection methods often fall short, particularly within resource-limited distributed networks like smart grids. This research project aims to develop an efficient malware detection system for such distributed networks, focusing on three elements: feature extraction, feature selection, and classification. For classification, a lightweight and accurate machine-learning model needs to be developed.en
dc.identifier.doi10.18420/ki2023-dc-12
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42400
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDC@KI2023: Proceedings of Doctoral Consortium at KI 2023
dc.subjectmachine learning; malware classification; intrusion detectionen
dc.titleLightweight Federated Learning Based Detection of Malicious Activity in Distributed Networksen
dc.typeText
gi.citation.endPage112
gi.citation.startPage103
gi.conference.date45195
gi.conference.locationBerlin
gi.conference.sessiontitleDoctoral Consortium at KI 2023
gi.document.qualitydigidoc

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
D3-paper.pdf
Größe:
126.15 KB
Format:
Adobe Portable Document Format