Logo des Repositoriums
 

Online performance prediction with architecture-level performance models

dc.contributor.authorBrosig, Fabian
dc.contributor.editorReussner, Ralf
dc.contributor.editorPretschner, Alexander
dc.contributor.editorJähnichen, Stefan
dc.date.accessioned2019-01-17T13:49:48Z
dc.date.available2019-01-17T13:49:48Z
dc.date.issued2011
dc.description.abstractToday's enterprise systems based on increasingly complex software architectures often exhibit poor performance and resource efficiency thus having high operating costs. This is due to the inability to predict at run-time the effect of changes in the system environment and adapt the system accordingly. We propose a new performance modeling approach that allows the prediction of performance and system resource utilization online during system operation. We use architecture-level performance models that capture the performance-relevant information of the software architecture, deployment, execution environment and workload. The models will be automatically maintained during operation. To derive performance predictions, we propose a tailorable model solving approach to provide flexibility in view of prediction accuracy and analysis overhead.en
dc.identifier.isbn978-3-88579-278-9
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/19896
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2011 – Workshopband
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-184
dc.titleOnline performance prediction with architecture-level performance modelsen
dc.typeText/Conference Paper
gi.citation.endPage284
gi.citation.publisherPlaceBonn
gi.citation.startPage279
gi.conference.date21.-25. Februar 2011
gi.conference.locationKarlsruhe
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
279.pdf
Größe:
64.19 KB
Format:
Adobe Portable Document Format