Logo des Repositoriums
 
Textdokument

Proof of Concept: Automatic Type Recognition

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

The type used to print an early modern book can give scholars valuable information about the time and place of its production as well as its producer. Recognizing such type is currently done manually using both the character shapes of 'M' or 'Qu' and the size of the total type to look it up in a large reference work. This is a reliable method, but it is also slow and requires specific skills. We investigate the performance of type classification and type retrieval using a newly created dataset consisting of easy and difficult types used in early printed books. For type classification, we rely on a deep Convolutional Neural Network (CNN) originally used for font-group classification while we use a common writer identification method for the retrieval case. We show that in both scenarios, easy types can be classified/retrieved with a high accuracy while difficult cases are indeed difficult.

Beschreibung

Christlein, Vincent; Weichselbaumer, Nikolaus; Limbach, Saskia; Seuret, Mathias (2021): Proof of Concept: Automatic Type Recognition. INFORMATIK 2020. DOI: 10.18420/inf2020_122. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-701-2. pp. 1307-1316. Methoden und Anwendungen der Computational Humanities. Karlsruhe. 28. September - 2. Oktober 2020

Zitierform

Tags