Logo des Repositoriums
 

Efficient adaptive retrieval and mining in large multimedia databases

dc.contributor.authorAssent, Ira
dc.contributor.editorFreytag, Johann-Christoph
dc.contributor.editorRuf, Thomas
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorVossen, Gottfried
dc.date.accessioned2019-02-20T10:28:13Z
dc.date.available2019-02-20T10:28:13Z
dc.date.issued2009
dc.description.abstractMultimedia databases are increasingly common in science, business, entertainment and many other applications. Their size and high dimensionality of features are major challenges for efficient and effective retrieval and mining. Effective similarity modelsen
dc.identifier.isbn978-3-88579-238-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/20463
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme in Business, Technologie und Web (BTW) – 13. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-144
dc.titleEfficient adaptive retrieval and mining in large multimedia databasesen
dc.typeText/Conference Paper
gi.citation.endPage437
gi.citation.publisherPlaceBonn
gi.citation.startPage428
gi.conference.date2.-6. März 2009
gi.conference.locationMünster
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
428.pdf
Größe:
4.76 MB
Format:
Adobe Portable Document Format