Logo des Repositoriums
 

GAIT3: An Event-based, RGB and Thermal Gait Database

dc.contributor.authorMohamed Eddine and Jean-Luc Dugelay
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:31Z
dc.date.available2022-10-27T10:19:31Z
dc.date.issued2022
dc.description.abstractIdentifying people by their gait has gained popularity in the last twenty years. Recent gait recognition methods use acquisitions extracted from advanced sensors such as cameras, depth sensors, microphones, etc. Recently, event-based cameras, a new family of cameras, are gaining popularity. They are vision sensors that differ completely from conventional cameras: instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes generated by moving objects. This motivated us to use it for individual recognition by gait. In this paper, we provide means for multimodal gait recognition, by introducing the “Event-based, RGB, and Thermal Gait” database. This database is the first that contains event-camera acquisition, simultaneously with conventional RGB and thermal videos. It contains recordings of people in three variations: normal walking, quick walking, and walking with a backpack. We also present experiments using a baseline algorithm based on gait energy images adapted to event-based camera output. Then we present a comparative experiment against RGB and thermal videos, using the same algorithm, that shows an advantage for event-based data.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9897039
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5497
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39708
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectEvent-based camera
dc.subjectGait recognition
dc.subjectGait Data Base
dc.subjectGait Energy Image
dc.titleGAIT3: An Event-based, RGB and Thermal Gait Databaseen
dc.typeText/Conference Paper
gi.citation.endPage292
gi.citation.publisherPlaceBonn
gi.citation.startPage285
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
31-BIOSIG_2022_paper_65.pdf
Größe:
376.13 KB
Format:
Adobe Portable Document Format