Logo des Repositoriums
 

Learning and Self-organization for Spatiotemporal Systems

dc.contributor.authorRunkler, Thomas A.
dc.contributor.authorSollacher, Rudolf
dc.contributor.authorSzabo, Andrei
dc.date.accessioned2018-01-08T09:15:58Z
dc.date.available2018-01-08T09:15:58Z
dc.date.issued2012
dc.description.abstractThis article deals with the modeling and management of spatiotemporal systems using machine learning and self-organization algorithms. Two application examples are the localization of objects from radio measurements using spatiotemporal models learned from data, and the self-organizing management of wireless multi-hop sensor networks. For both examples we show how machine learning and self-organization significantly increases accuracy and efficiency.
dc.identifier.pissn1610-1987
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/11291
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 26, No. 3
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.titleLearning and Self-organization for Spatiotemporal Systems
dc.typeText/Journal Article
gi.citation.endPage274
gi.citation.startPage269

Dateien