Logo des Repositoriums
 

Finding Tiny Clusters in Bipartite Graphs

dc.contributor.authorNeumann, Stefan
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:22Z
dc.date.available2019-08-27T12:55:22Z
dc.date.issued2019
dc.description.abstractWe study the problem of finding clusters in random bipartite graphs. Applications of this problem include online shops in which one wants to find customers who purchase similar products and groups of products which are frequently bought together. We present a simple two-step algorithm which provably finds tiny clusters of size O(n" ), where n is the number of vertices in the graph and " > 0; previous algorithms were only able to identify medium-sized clusters consisting of at least (pn) vertices. We practically evaluate the algorithm on synthetic and on real-world data; the experiments show that the algorithm can find extremely small clusters even when the graphs are very sparse and the data contains a lot of noise.en
dc.identifier.doi10.18420/inf2019_30
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24978
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjectBiclustering
dc.subjectBipartite Graphs
dc.subjectRandom Graphs
dc.subjectStochastic Block Models
dc.titleFinding Tiny Clusters in Bipartite Graphsen
dc.typeText/Conference Paper
gi.citation.endPage254
gi.citation.publisherPlaceBonn
gi.citation.startPage253
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleData Science

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper3_07.pdf
Größe:
81.18 KB
Format:
Adobe Portable Document Format