Logo des Repositoriums
 

Privacy Aware Processing

dc.contributor.authorEleks, Marian
dc.contributor.authorRebstadt, Jonas
dc.contributor.authorKortum, Henrik
dc.contributor.authorThomas, Oliver
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorWohlgemuth, Volker
dc.date.accessioned2023-11-29T14:50:32Z
dc.date.available2023-11-29T14:50:32Z
dc.date.issued2023
dc.description.abstractIn many machine learning (ML) applications, the provision of data and the training as well as the analysis of machine learning systems are performed by distinct actors, a data owner and a data consumer. To protect sensitive information in these ML-scenarios, privacy aware machine learning (PAML) methods are often applied to the data before sharing. Based on the type of PAML methods used, data understanding and preparation as defined in the CRISP-DM model become more difficult if not impossible. To enable these steps, we propose a method to share a variety of uncritical information with the data consumer who is then able to define the necessary processing steps on a meta-level. These are then applied to the data in the data owners local trusted environment before the PAML-methods whereupon the prepared and protected data is shared.en
dc.identifier.doi10.18420/inf2023_67
dc.identifier.isbn978-3-88579-731-9
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43189
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2023 - Designing Futures: Zukünfte gestalten
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-337
dc.subjectPrivacy Aware Machine Learning
dc.subjectData Understanding
dc.subjectData Preparation
dc.subjectCRISP-DM
dc.subjectArtificial Intelligence
dc.subjectMachine Learning
dc.titlePrivacy Aware Processingen
dc.typeText/Conference Paper
gi.citation.endPage569
gi.citation.publisherPlaceBonn
gi.citation.startPage561
gi.conference.date26.-29. September 2023
gi.conference.locationBerlin
gi.conference.sessiontitleCybersecurity & Privatsphäre - 4. Interdisciplinary Privacy Security at Large Workshop

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
03_01_09_Eleks.pdf
Größe:
423.12 KB
Format:
Adobe Portable Document Format