Logo des Repositoriums
 

Reranking-based Recommender System with Deep Learning

dc.contributor.authorSaleh, Ahmed
dc.contributor.authorMai, Florian
dc.contributor.authorNishioka, Chifumi
dc.contributor.authorScherp, Ansgar
dc.contributor.editorEibl, Maximilian
dc.contributor.editorGaedke, Martin
dc.date.accessioned2017-08-28T23:47:40Z
dc.date.available2017-08-28T23:47:40Z
dc.date.issued2017
dc.description.abstractAn enormous volume of scientific content is published every year. The amount exceeds by far what a scientist can read in her entire life. In order to address this problem, we have developed and empirically evaluated a recommender system for scientific papers based on Twitter postings. In this paper, we improve on the previous work by a reranking approach using Deep Learning. Thus, after a list of top-k recommendations is computed, we rerank the results by employing a neural network to improve the results of the existing recommender system. We present the design of the deep reranking approach and a preliminary evaluation. Our results show that in most cases, the recommendations can be improved using our Deep Learning reranking approach.en
dc.identifier.doi10.18420/in2017_216
dc.identifier.isbn978-3-88579-669-5
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2017
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-275
dc.subjectrecommender systems
dc.subjectdeep learning
dc.subjectsemantic profiling
dc.titleReranking-based Recommender System with Deep Learningen
gi.citation.endPage2175
gi.citation.startPage2169
gi.conference.date25.-29. September 2017
gi.conference.locationChemnitz
gi.conference.sessiontitleDeep Learning in heterogenen Datenbeständen

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B29-3.pdf
Größe:
235.44 KB
Format:
Adobe Portable Document Format