Konferenzbeitrag
Über Diskriminierung durch Künstliche Intelligenz
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Zusatzinformation
Datum
2021
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Heutzutage gibt es eine Fülle von Daten, was aber nicht gleichbedeutend mit mehr Informationen ist. Die Datenqualität ist ein wichtiges Thema, da Algorithmen für maschinelles Lernen auf Daten basieren. Wir untersuchen das Class-Imbalance-Problem, das Algorithmen für maschinelles Lernen dramatisch beeinträchtigt. Es führt dazu, dass KI-Modelle effektiv eine bestimmte Klasse lernen, während sie andere Klassen aufgrund von schiefen Label-Verteilungen ignorieren. Dies führt dazu, dass Modelle des maschinellen Lernens, die in Bereichen mit großer gesellschaftlicher Bedeutung eingesetzt werden, Gruppen von Menschen oder Individuen, die in den Daten nicht gut repräsentiert sind, voreingenommen gegenüberstehen. In dieser Arbeit wird die Klassenungleichheit beim fairnessbasierten Lernen untersucht. Unsere Methoden bekämpfen die Klassenungleichheit und liefern faire Ergebnisse für unterrepräsentierte Personen, die von Algorithmen diskriminiert werden.