Logo des Repositoriums
 

Detektion eines Grünlandschwades mit Stereo-RGB Kamera

dc.contributor.authorRiegler-Nurscher, Peter
dc.contributor.authorPrankl, Johann
dc.contributor.authorHofinger, Markus
dc.contributor.authorVincze, Markus
dc.contributor.editorGandorfer, Markus
dc.contributor.editorMeyer-Aurich, Andreas
dc.contributor.editorBernhardt, Heinz
dc.contributor.editorMaidl, Franz Xaver
dc.contributor.editorFröhlich, Georg
dc.contributor.editorFloto, Helga
dc.date.accessioned2020-03-04T13:06:38Z
dc.date.available2020-03-04T13:06:38Z
dc.date.issued2020
dc.description.abstractRobustes Detektieren von Grünlandschwaden ist die Grundlage für die Automatisierung bei der Heu- und Silage-Ernte. Vor allem bei kleinem Schwadvolumen ist die Detektion basierend auf Daten von 3D-Sensoren fehleranfällig. Es wird eine neue Methode zur Segmentierung einer Schwad in einem RGB-Bild basierend auf einem Convolutional Neural Network (CNN) vorgestellt. Die Methode wird mit der Segmentierung von 3D-Tiefendaten einer Stereo-Kamera mittels Ebenen-Detektion verglichen. Zur Validierung beider Methoden wurden Aufnahmen bei der Silage- und bei der Heuernte manuell annotiert. Es kann gezeigt werden, dass die CNN-basierte Schwaderkennung bei kleinem Volumen eine höhere Genauigkeit erreicht.de
dc.identifier.isbn978-3-88579-693-0
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/31907
dc.language.isode
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-299
dc.subjectGrünland
dc.subjectSchwaderkennung
dc.subjectConvolutional Neural Network
dc.titleDetektion eines Grünlandschwades mit Stereo-RGB Kamerade
dc.typeText/Conference Paper
gi.citation.endPage270
gi.citation.publisherPlaceBonn
gi.citation.startPage265
gi.conference.date17.-18. Februar 2020
gi.conference.locationWeihenstephan, Freising

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL_2020_Riegler-Nurscher_265-270.pdf
Größe:
617.07 KB
Format:
Adobe Portable Document Format