Logo des Repositoriums
 

Exploiting scale-free information from expression data for cancer classification

dc.contributor.authorAntonov, Alexey V.
dc.contributor.authorTetko, Igor V.
dc.contributor.authorKosykh, Denis
dc.contributor.authorSurmeli, Dmitrij
dc.contributor.authorMewes, Hans-Werner
dc.contributor.editorTorda, Andrew
dc.contributor.editorKurtz, Stefan
dc.contributor.editorRarey, Matthias
dc.date.accessioned2019-08-27T08:22:34Z
dc.date.available2019-08-27T08:22:34Z
dc.date.issued2005
dc.description.abstractIn most studies concerning expression data analyses information on the variability of gene intensity across samples is usually exploited. This information is sensitive to initial data processing which affects the final conclusions. However expression data contains scale free information which is directly comparable between different samples. We propose to use the pairwise ratio of gene expression values rather than their absolute intensities for classification of expression data. This information is stable to data processing and thus more attractive for classification analyses. In proposed schema of data analyses only information on relative gene expression levels in each sample is exploited. Testing on publicly available datasets leads to superior classification results.en
dc.identifier.isbn3-88579-400-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24922
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofGerman Conference on Bioinformatics 2005 (GCB 2005)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-71
dc.titleExploiting scale-free information from expression data for cancer classificationen
dc.typeText/Conference Paper
gi.citation.endPage102
gi.citation.publisherPlaceBonn
gi.citation.startPage93
gi.conference.date5.-7. Oktober 2005
gi.conference.locationHamburg
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI-Proceedings.71-10.pdf
Größe:
343.58 KB
Format:
Adobe Portable Document Format