Konferenzbeitrag
Generation of inputs to renewable energy sources using matched-block bootstrap approach with fitness proportionate selection
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Conference Paper
Zusatzinformation
Datum
2013
Autor:innen
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Shaker Verlag
Zusammenfassung
Renewable energy sources produce clean, green energy, but their production is highly variable in time due to
changeable weather conditions. Energy management systems are implemented to cope with that problem. Their
proper design requires an exhaustive testing. Creation of realistic test cases requires certain amount of test data (such
as wind speed and insolation). As the required amount of measured data is usually not available, they have to be generated
in a way that preserves the statistical qualities of the real life phenomenon. In this article a matched-block
bootstrap with fitness proportionate selection method is presented. It is a non-parametric method that samples data
blocks from a real data set and concatenates them into a new data set. To model the seasonal cycles (especially visible
for temperature and solar irradiance) the blocks in the bootstrap method are categorized by month, day and time,
creating sets of subsequent blocks from different years with the same time and date. To maintain the coherence of
data, the fitness proportionate selection methods are introduced. They provide mechanisms to choose better matching
blocks with higher probability. Two fitness functions are considered for this, one using an inversion and another using
a negation operation. The matched-block bootstrap methods were tested using 9 years of measurements of solar
irradiance and 10 years of data of wind speed in central Poland both taken at 10-minute intervals. The generated time
series have the same values for the basic statistic factors as the original data and allow for creating test sequences of
an arbitrary length.