Logo des Repositoriums
 

Start Intention Detection of Cyclists using an LSTM Network

dc.contributor.authorKress, Viktor
dc.contributor.authorJung, Janis
dc.contributor.authorZernetsch, Stefan
dc.contributor.authorDoll, Konrad
dc.contributor.authorSick, Bernhard
dc.contributor.editorDraude, Claude
dc.contributor.editorLange, Martin
dc.contributor.editorSick, Bernhard
dc.date.accessioned2019-08-27T13:00:18Z
dc.date.available2019-08-27T13:00:18Z
dc.date.issued2019
dc.description.abstractIn this article, we present an approach for start intention detection of cyclists based on their head trajectories. Therefore, we are using a network architecture based on Long Short-Term Memory (LSTM) cells, which is able to handle input sequences of different lengths. This is important because, for example, due to occlusions, cyclists often only become visible to approaching vehicles shortly before dangerous situations occur. Hence, the dependency of the results on the input sequence length is investigated. We use a dataset with 206 situations where cyclists were transitioning from waiting to moving that was recorded from a moving vehicle in inner-city traffic.With an input sequence length of 1.0 s we achieve an F1-score of 96.2% on average 0.680 s after the first movement of the bicycle. We obtain similar results for sequence lengths down to 0.2 s. For shorter sequences, the results regarding the F1-score and the mean detection time deteriorate considerably.en
dc.identifier.doi10.18420/inf2019_ws25
dc.identifier.isbn978-3-88579-689-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/25058
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-295
dc.subjectDetection
dc.subjectCyclist
dc.subjectLSTM Network
dc.titleStart Intention Detection of Cyclists using an LSTM Networken
dc.typeText/Conference Paper
gi.citation.endPage228
gi.citation.publisherPlaceBonn
gi.citation.startPage219
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleWorkshop on ICT based Collision Avoidance for VRUs

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper04_05.pdf
Größe:
345.58 KB
Format:
Adobe Portable Document Format