Logo des Repositoriums
 

Graph-Based Analysis and Visualization of Software Traces

dc.contributor.authorMüller, Richard
dc.contributor.authorFischer, Matteo
dc.contributor.editorKelter, Udo
dc.date.accessioned2023-02-27T13:59:24Z
dc.date.available2023-02-27T13:59:24Z
dc.date.issued2019
dc.description.abstractGraphs are a suitable representation of software artifacts’ data created during development and maintenance activities. Software traces monitored with Kieker are one example of such data. We present a jQAssistant plugin that scans event-based Kieker traces and stores them in a Neo4j graph database. This opens up new possibilities for analyzing and visualizing these traces with respect to application performance monitoring and architecture discovery. We illustrate the feasibility and usefulness of the plugin with the Bookstore application example.en
dc.identifier.pissn0720-8928
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40480
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftwaretechnik-Trends Band 39, Heft 4
dc.relation.ispartofseriesSoftwaretechnik-Trends
dc.subjectsoftware trace
dc.subjectgraph
dc.subjectvisualization
dc.subjectperformance
dc.subjectmonitoring
dc.subjectarchitecture discovery
dc.titleGraph-Based Analysis and Visualization of Software Tracesen
dc.typeText/Conference Paper
gi.citation.endPage28
gi.citation.publisherPlaceBonn
gi.citation.startPage26
gi.conference.date5.-6. November 2019
gi.conference.locationWürzburg
gi.conference.sessiontitle10th Symposium on Software Performance (SSP)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
SSP2019_Mueller.pdf
Größe:
258.72 KB
Format:
Adobe Portable Document Format