Logo des Repositoriums
 

Using Knowledge Graphs to Manage a Data Lake

dc.contributor.authorDibowski, Henrik
dc.contributor.authorSchmid, Stefan
dc.contributor.editorReussner, Ralf H.
dc.contributor.editorKoziolek, Anne
dc.contributor.editorHeinrich, Robert
dc.date.accessioned2021-01-27T13:33:29Z
dc.date.available2021-01-27T13:33:29Z
dc.date.issued2021
dc.description.abstractKnowledge graphs as fundamental pillar of artificial intelligence are experiencing a strong demand. In contrast to machine learning and deep learning, knowledge graphs do not require large amounts of (training) data and offer a bigger potential for a multitude of domains and problems. This article shows the application of knowledge graphs for the semantic description and management of data in a data lake, which improves the findability and reusability of data, and enables the automatic processing by algorithms. Since knowledge graphs contain both the data as well as its semantically described schema (ontology), they enable novel ontology-driven software architectures, in which the domain knowledge and business logic can completely reside on the knowledge graph level. This article further introduces such a use case: an ontology-driven frontend implementation, which is able to fully adapt itself based on the underlying knowledge graph schema and dynamically render information in the desired manner.en
dc.identifier.doi10.18420/inf2020_02
dc.identifier.isbn978-3-88579-701-2
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34726
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2020
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-307
dc.subjectArtificial Intelligence
dc.subjectOntology
dc.subjectKnowledge Representation
dc.subjectKnowledge Graph
dc.subjectSemantic Data Lake
dc.subjectData Catalog
dc.subjectSemantic Search
dc.subjectSemantic Layer
dc.subjectOntology-Driven UIs
dc.titleUsing Knowledge Graphs to Manage a Data Lakeen
gi.citation.endPage50
gi.citation.startPage41
gi.conference.date28. September - 2. Oktober 2020
gi.conference.locationKarlsruhe
gi.conference.sessiontitleSemantics and Knowledge Engineering

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A2-1.pdf
Größe:
825.9 KB
Format:
Adobe Portable Document Format