Logo des Repositoriums
 

The Proportional Constraint and Its Pruning -- Continued

dc.contributor.authorWolf,Armin
dc.contributor.editorDemmler, Daniel
dc.contributor.editorKrupka, Daniel
dc.contributor.editorFederrath, Hannes
dc.date.accessioned2022-09-28T17:10:12Z
dc.date.available2022-09-28T17:10:12Z
dc.date.issued2022
dc.description.abstractMotivated by the necessity to model the adaptation of water levels in locks, a new variant of the Proportional Constraint is introduced in finite integer domain Constraint Programming using rounding-up (ceiling) instead of rounding. For its practical use in applications of finite domain Constraint Programming pruning rules are presented and their correctness is proven. Further, it is shown by examples that the number of iterations necessary to reach a fixed-point while pruning depends on the considered constraint instances. Importantly, fixed-point iteration always results in the strongest notion of bounds consistency which is proved, too. Furthermore, an alternative modelling of this constraint is presented. The run-times of the implementations of both alternatives are compared showing that the pruning rules introduced herein perform always better than the alternative approach on the chosen problem samples.en
dc.identifier.doi10.18420/inf2022_142
dc.identifier.isbn978-3-88579-720-3
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39506
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-326
dc.subjectbounds consistency
dc.subjectfinite domain Constraint Programming
dc.subjectfixed-point iteration
dc.subjectProportional Ceiling Constraint
dc.subjectpruning rules
dc.titleThe Proportional Constraint and Its Pruning -- Continueden
gi.citation.endPage1665
gi.citation.startPage1655
gi.conference.date26.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitle14. Workshop KI-basiertes Management und Optimierung komplexer Systeme / MOC 2022

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
moc_01.pdf
Größe:
132.1 KB
Format:
Adobe Portable Document Format