Logo des Repositoriums
 
Textdokument

Modellierung von 3D-Menschen: Pose, Form, Kleidung und Interaktionen

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Diese Arbeit stellt neuartige Methoden zur Modellierung des Aussehens und der Handlungen digitaler Menschen vor, die in verschiedenen Anwendungen wie Spielen, virtuellem Anprobieren, Telepräsenz und Metaverse immer häufiger vorkommen. Unsere vier Hauptbeiträge sind: i) MGN (Multi-Garment Network), eine Methode zur Rekonstruktion von 3D-Kleidungsstücken und Körperformen aus RGB-Bildern; und das SMPL+G-Modell, eine Erweiterung des SMPL-Körpermodells um Kleidungsstücke. ii) IPNet (Implicit Part Network), ein neuronales Netzwerk, das implizite Funktionen verwendet, um detaillierte menschliche 3D-Netze zu rekonstruieren und diese im SMPL-Modell zu registrieren. iii) LoopReg, die erste vollständig differenzierbare End-to-End-Methode zur Registrierung eines parametrischen Modells in 3D-Netzen mithilfe impliziter Funktionen. iv) BEHAVE, ein Datensatz und eine Methode zur Verfolgung von Mensch-Objekt-Interaktionen in 3D. Die Arbeit bietet außerdem eine gründliche Analyse der vorgeschlagenen Methoden und ihrer Grenzen und schlägt Richtungen für zukünftige Arbeiten vor. Der Code, die digitale MGN-Garderobe, der BEHAVE-Datensatz und die These sind öffentlich verfügbar.

Beschreibung

Bhatnagar, Bharat Lal (2024): Modellierung von 3D-Menschen: Pose, Form, Kleidung und Interaktionen. Ausgezeichnete Informatikdissertationen 2023 (Band 24). DOI: 10.18420/Diss2023-03. Bonn: Gesellschaft für Informatik e.V.. ISBN: 978-3-88579-982-5. pp. 31-40. Schoss Dagstuhl, Deutschland. 05.05.-08.05.24

Schlagwörter

Zitierform

Tags