Logo des Repositoriums
 

An anomaly detection approach for backdoored neural networks: face recognition as a case study

dc.contributor.authorAlexander Unnervik and Sébastien Marcel
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:34Z
dc.date.available2022-10-27T10:19:34Z
dc.date.issued2022
dc.description.abstractBackdoor attacks allow an attacker to embed functionality jeopardizing proper behavior of any algorithm, machine learning or not. This hidden functionality can remain inactive for normal use of the algorithm until activated by the attacker. Given how stealthy backdoor attacks are, consequences of these backdoors could be disastrous if such networks were to be deployed for applications as critical as border or access control. In this paper, we propose a novel backdoored network detection method based on the principle of anomaly detection, involving access to the clean part of the training data and the trained network.We highlight its promising potential when considering various triggers, locations and identity pairs, without the need to make any assumptions on the nature of the backdoor and its setup. We test our method on a novel dataset of backdoored networks and report detectability results with perfect scores.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9897044
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5475
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39718
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectBackdoor attack
dc.subjecttrojan attack
dc.subjectanomaly detection
dc.subjectCNN
dc.subjectface recognition
dc.subjectbiometrics
dc.subjectsecurity
dc.titleAn anomaly detection approach for backdoored neural networks: face recognition as a case studyen
dc.typeText/Conference Paper
gi.citation.endPage88
gi.citation.publisherPlaceBonn
gi.citation.startPage80
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
08-BIOSIG_2022_paper_44.pdf
Größe:
840.17 KB
Format:
Adobe Portable Document Format