Logo des Repositoriums
 

Feature Engineering Techniques and Spatio-Temporal Data Processing

dc.contributor.authorForke, Chris-Marian
dc.contributor.authorTropmann-Frick, Marina
dc.date.accessioned2022-01-27T13:27:55Z
dc.date.available2022-01-27T13:27:55Z
dc.date.issued2021
dc.description.abstractMore and more applications nowadays use spatio-temporal data for different purposes. In order to be processed and used efficiently, this unique type of data requires special handling. This paper summarizes methods and approaches for feature selection of spatio-temporal data and machine learning algorithms for spatio-temporal data engineering. Furthermore, it highlights relevant work in specific domains. The range of possible approaches for data processing is quite wide. However, in order to use these approaches with the spatio-temporal data in a meaningful and practical way, individual data processing steps need to be adapted. One of the most important steps is feature engineering.de
dc.identifier.doi10.1007/s13222-021-00391-x
dc.identifier.pissn1610-1995
dc.identifier.urihttp://dx.doi.org/10.1007/s13222-021-00391-x
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/38052
dc.publisherSpringer
dc.relation.ispartofDatenbank-Spektrum: Vol. 21, No. 3
dc.relation.ispartofseriesDatenbank-Spektrum
dc.subjectFeature engineering
dc.subjectFeature selection
dc.subjectSpatio-temporal data
dc.titleFeature Engineering Techniques and Spatio-Temporal Data Processingde
dc.typeText/Journal Article
gi.citation.endPage244
gi.citation.startPage237

Dateien