Logo des Repositoriums
 

Deep Learning Pipeline for Automated Visual Moth Monitoring: Insect Localization and Species Classification

dc.contributor.authorKorsch, Dimitri
dc.contributor.authorBodesheim, Paul
dc.contributor.authorDenzler, Joachim
dc.date.accessioned2021-12-14T10:57:24Z
dc.date.available2021-12-14T10:57:24Z
dc.date.issued2021
dc.description.abstractBiodiversity monitoring is crucial for tracking and counteracting adverse trends in population fluctuations. However, automatic recognition systems are rarely applied so far, and experts evaluate the generated data masses manually. Especially the support of deep learning methods for visual monitoring is not yet established in biodiversity research, compared to other areas like advertising or entertainment. In this paper, we present a deep learning pipeline for analyzing images captured by a moth scanner, an automated visual monitoring system of moth species developed within the AMMOD project. We first localize individuals with a moth detector and afterward determine the species of detected insects with a classifier. Our detector achieves up to 99:01% mean average precision and our classifier distinguishes 200 moth species with an accuracy of 93:13% on image cutouts depicting single insects. Combining both in our pipeline improves the accuracy for species identification in images of the moth scanner from 79:62% to 88:05%.en
dc.identifier.doi10.18420/informatik2021-036
dc.identifier.isbn978-3-88579-708-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37700
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-314
dc.subjectBiodiversity Monitoring
dc.subjectDeep Learning
dc.subjectConvolutional Neural Networks
dc.subjectInsect Detection
dc.subjectSpecies Classification
dc.subjectUnsupervised Part Estimation
dc.titleDeep Learning Pipeline for Automated Visual Moth Monitoring: Insect Localization and Species Classificationen
gi.citation.endPage460
gi.citation.startPage443
gi.conference.date27. September - 1. Oktober 2021
gi.conference.locationBerlin
gi.conference.sessiontitleWorkshop: Computer Science for Biodiversity (CS4BIODiversity)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
D1-3.pdf
Größe:
11.05 MB
Format:
Adobe Portable Document Format