Logo des Repositoriums
 
Zeitschriftenartikel

Evaluation of GPU-Compression Algorithms for CUDA-Aware MPI

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V., Fachgruppe PARS

Zusammenfassung

This study evaluates an efficient compression algorithm suitable for use with CUDA-aware MPI, aiming to lessen the latency of extensive GPU message transfers. We examine the performance of various compression algorithms on distinct datasets. Ndzip emerges as the optimal compression algorithm for our needs. Our findings reveal that large message latency can improve depending on the dataset. However, latency may increase for non-compressible data due to overhead when using compression. With well-compressible data, the Cannon algorithm for dense matrix-matrix multiplication can improve performance by up to 30%. For data that is not highly compressible, there’s only a minor performance penalty, as the compression overhead remains relatively small.

Beschreibung

Vogel, Marco; Oden, Lena (2024): Evaluation of GPU-Compression Algorithms for CUDA-Aware MPI. PARS-Mitteilungen: Vol. 36. Gesellschaft für Informatik e.V., Fachgruppe PARS. ISSN: 0177-0454

Schlagwörter

Zitierform

DOI

Tags