Logo des Repositoriums
 

Information Retrieval for Precision Oncology

dc.contributor.authorSeva, Jurica
dc.contributor.authorGoetze, Julian
dc.contributor.authorLamping, Mario
dc.contributor.authorRieke, Damian Tobias
dc.contributor.authorSchaefer, Reinhold
dc.contributor.authorLeser, Ulf
dc.contributor.editorGrust, Torsten
dc.contributor.editorNaumann, Felix
dc.contributor.editorBöhm, Alexander
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorHärder, Theo
dc.contributor.editorRahm, Erhard
dc.contributor.editorHeuer, Andreas
dc.contributor.editorKlettke, Meike
dc.contributor.editorMeyer, Holger
dc.date.accessioned2019-04-11T07:21:31Z
dc.date.available2019-04-11T07:21:31Z
dc.date.issued2019
dc.description.abstractDiagnosis and treatment decisions in cancer increasingly depend on a detailed analysis of the mutational status of a patient’s genome. This analysis relies on previously published information regarding the association of variations to disease progression and possible interventions. Clinicians to a large degree use biomedical search engines to obtain such information; however, the vast majority of search results in the common search engines focuses on basic science and is clinically irrelevant. We developed the Variant-Information Search Tool, a search engine designed for the targeted search of clinically relevant publications given a mutation profile. VIST indexes all PubMed abstracts, applies advanced text mining to identify mentions of genes and variants and uses machine-learning based scoring to judge the relevancy of documents. Its functionality is available through a fast and intuitive web interface. We also performed a comparative evaluation, showing that VIST’s ranking is superior to that of PubMed or vector space models.en
dc.identifier.doi10.18420/btw2019-39
dc.identifier.isbn978-3-88579-683-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/21725
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBTW 2019
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) – Proceedings, Volume P-289
dc.titleInformation Retrieval for Precision Oncologyen
gi.citation.endPage536
gi.citation.startPage533
gi.conference.date4.-8. März 2019
gi.conference.locationRostock
gi.conference.sessiontitleDemonstrationen

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
E09-1.pdf
Größe:
344.78 KB
Format:
Adobe Portable Document Format