Logo des Repositoriums
 

No Mayfly: Detection and Analysis of Long-term Twitter Trends

dc.contributor.authorZiegler, John
dc.contributor.authorGertz, Michael
dc.contributor.editorKönig-Ries, Birgitta
dc.contributor.editorScherzinger, Stefanie
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorVossen, Gottfried
dc.date.accessioned2023-02-23T13:59:47Z
dc.date.available2023-02-23T13:59:47Z
dc.date.issued2023
dc.description.abstractThe focus of social media is characterized by stories about short-lived breaking news. Often, such mayflies make it hard to keep track of more profound topics that are prevalent over a longer period of time. To tackle this issue we present a method to detect such long-term trends based on temporal networks and community evolution. Connecting those methods with that of trend analysis allows to study the temporal development of trends"en
dc.identifier.doi10.18420/BTW2023-17
dc.identifier.isbn978-3-88579-725-8
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40321
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBTW 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-331
dc.subjectSocial Media Analytics
dc.subjectTemporal Networks
dc.subjectTrend Analysis
dc.subjectTwitter Data
dc.titleNo Mayfly: Detection and Analysis of Long-term Twitter Trendsen
dc.typeText/Conference Paper
gi.citation.endPage364
gi.citation.publisherPlaceBonn
gi.citation.startPage353
gi.conference.date06.-10. März 2023
gi.conference.locationDresden, Germany

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B3-6.pdf
Größe:
5.1 MB
Format:
Adobe Portable Document Format