Logo des Repositoriums
 

Exploring gender prediction from iris biometrics

dc.contributor.authorFairhurst, Michael
dc.contributor.authorErbilek, Meryem
dc.contributor.authorDa Costa-Abreu, Márjory
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2017-06-30T08:19:14Z
dc.date.available2017-06-30T08:19:14Z
dc.date.issued2015
dc.description.abstractPrediction of gender characteristics from iris images has been investigated and some successful results have been reported in the literature, but without considering performance for different iris features and classifiers. This paper investigates for the first time an approach to gender prediction from iris images using different types of features (including a small number of very simple geometric features, texture features and a combination of geometric and texture features) and a more versatile and intelligent classifier structure. Our proposed approaches can achieve gender prediction accuracies of up to 90\% in the BioSecure Database.en
dc.identifier.isbn978-3-88579-639-8
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2015
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-245
dc.titleExploring gender prediction from iris biometricsen
dc.typeText/Conference Paper
gi.citation.endPage230
gi.citation.publisherPlaceBonn
gi.citation.startPage223
gi.conference.date9.-11. September 2015
gi.conference.locationDarmstadt

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
223.pdf
Größe:
111.76 KB
Format:
Adobe Portable Document Format