Logo des Repositoriums
 

Longitudinal study of voice recognition in children

dc.contributor.authorPurnapatra, Sandip
dc.contributor.authorDas, Priyanka
dc.contributor.authorHolsopple, Laura
dc.contributor.authorSchuckers, Stephanie
dc.contributor.editorBrömme, Arslan
dc.contributor.editorBusch, Christoph
dc.contributor.editorDantcheva, Antitza
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorUhl, Andreas
dc.date.accessioned2020-09-16T08:25:42Z
dc.date.available2020-09-16T08:25:42Z
dc.date.issued2020
dc.description.abstractSpeaker recognition as a biometric modality is on the rise in the consumer marketplace for banking, online services, and personal assistant services with a potential for wider application areas. Most current applications involve adults. One of the biggest challenges in speaker recognition for children is the change in the voice properties as a child age. This work proposes a baseline longitudinal dataset from the same 30 children in the age group of 4 to 14 years over a time frame of 2.5 years and evaluates speaker recognition performance in children with the available speaker recognition technology.en
dc.identifier.isbn978-3-88579-700-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/34317
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-306
dc.subjectSpeaker verification
dc.subjectChildren’s voice
dc.subjectMFCC
dc.subjectLFCC
dc.subjectGMM
dc.subjectJFA
dc.subjectISV
dc.subjectInter-session variability.
dc.titleLongitudinal study of voice recognition in childrenen
dc.typeText/Conference Paper
gi.citation.endPage106
gi.citation.publisherPlaceBonn
gi.citation.startPage97
gi.conference.date16.-18. September 2020
gi.conference.locationInternational Digital Conference
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
BIOSIG_2020_paper_51_update3.pdf
Größe:
4.1 MB
Format:
Adobe Portable Document Format