Logo des Repositoriums
 
Konferenzbeitrag

Prosodic addressee-detection: ensuring privacy in always-on spoken dialog systems

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2020

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

ACM

Zusammenfassung

We analyze the addressee detection task for complexityidentical dialog for both human conversation and devicedirected speech. Our recurrent neural model performs at least as good as humans, who have problems with this task, even native speakers, who profit from the relevant linguistic skills. We perform ablation experiments on the features used by our model and show that fundamental frequency variation is the single most relevant feature class. Therefore, we conclude that future systems can detect whether they are addressed based only on speech prosody which does not (or only to a very limited extent) reveal the content of conversations not intended for the system.

Beschreibung

Baumann, Timo; Siegert, Ingo (2020): Prosodic addressee-detection: ensuring privacy in always-on spoken dialog systems. Mensch und Computer 2020 - Tagungsband. DOI: 10.1145/3404983.3410021. New York: ACM. pp. 195–198. MCI: Short Paper (Poster). Magdeburg. 6.-9. September 2020

Zitierform

Tags