Konferenzbeitrag
Fusion of Face Demorphing and Deep Face Representations for Differential Morphing Attack Detection
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Conference Paper
Zusatzinformation
Datum
2022
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
Algorithm fusion is frequently employed to improve the accuracy of pattern recognition
tasks. This particularly applies to biometrics including attack detection mechanisms. In this work, we apply a fusion of two differential morphing attack detection methods, i.e. Demorphing and Deep Face Representations. Experiments are performed in a cross-database scenario using high-quality face morphs along with realistic live captures. Obtained results reveal that a weighted sum-based score-level fusion of Demorphing and Deep Face Representations improves the morphing attack detection accuracy. With the proposed fusion, a detection equal error rate of 4.9% is achieved, compared to detection equal error rates of 5.6% and 5.8% of the best individual morphing attack detection methods, respectively.