Logo des Repositoriums
 
Konferenzbeitrag

Fusion of Face Demorphing and Deep Face Representations for Differential Morphing Attack Detection

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Algorithm fusion is frequently employed to improve the accuracy of pattern recognition tasks. This particularly applies to biometrics including attack detection mechanisms. In this work, we apply a fusion of two differential morphing attack detection methods, i.e. Demorphing and Deep Face Representations. Experiments are performed in a cross-database scenario using high-quality face morphs along with realistic live captures. Obtained results reveal that a weighted sum-based score-level fusion of Demorphing and Deep Face Representations improves the morphing attack detection accuracy. With the proposed fusion, a detection equal error rate of 4.9% is achieved, compared to detection equal error rates of 5.6% and 5.8% of the best individual morphing attack detection methods, respectively.

Beschreibung

Shiqerukaj, Elidona; Rathgeb, Christian; Merkle, Johannes; Drozdowski, Pawel; Tams, Benjamin (2022): Fusion of Face Demorphing and Deep Face Representations for Differential Morphing Attack Detection. BIOSIG 2022. DOI: 10.1109/BIOSIG55365.2022.9897023. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5481. ISBN: 978-3-88579-723-4. pp. 141-149. Regular Research Papers. Darmstadt. 14.-16. September 2022

Zitierform

Tags