Measuring the performance of evolutionary multi-objective feature selection for prediction of musical genres and styles
dc.contributor.author | Vatolkin, Igor | |
dc.contributor.editor | Horbach, Matthias | |
dc.date.accessioned | 2019-03-07T09:32:29Z | |
dc.date.available | 2019-03-07T09:32:29Z | |
dc.date.issued | 2013 | |
dc.description.abstract | The prediction of high-level music categories, such as genres, styles, or personal preferences, helps to organise music collections. The relevance of single audio features for automatic classification depends on a certain category. Relevant feature subsets for each classification task can be identified by means of feature selec- tion. Continuing our previous studies on multi-objective feature selection for music classification, in this work we measure an impact of evolutionary multi-objective fea- ture selection on classification performance and compare it to the baseline application without feature selection. As confirmed by statistical tests, the integration of evolu- tionary multi-objective feature selection leads to a significant increase of performance according to both evaluation criteria as well as to classification error. This holds for all four tested classification methods and six music categories. | en |
dc.identifier.isbn | 978-3-88579-614-5 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/20715 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | INFORMATIK 2013 – Informatik angepasst an Mensch, Organisation und Umwelt | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-220 | |
dc.title | Measuring the performance of evolutionary multi-objective feature selection for prediction of musical genres and styles | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 3025 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 3012 | |
gi.conference.date | 16.-20. September 2013 | |
gi.conference.location | Koblenz | |
gi.conference.sessiontitle | Regular Research Papers |
Dateien
Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
- Name:
- 3012.pdf
- Größe:
- 336 KB
- Format:
- Adobe Portable Document Format