Logo des Repositoriums
 

Measuring the performance of evolutionary multi-objective feature selection for prediction of musical genres and styles

dc.contributor.authorVatolkin, Igor
dc.contributor.editorHorbach, Matthias
dc.date.accessioned2019-03-07T09:32:29Z
dc.date.available2019-03-07T09:32:29Z
dc.date.issued2013
dc.description.abstractThe prediction of high-level music categories, such as genres, styles, or personal preferences, helps to organise music collections. The relevance of single audio features for automatic classification depends on a certain category. Relevant feature subsets for each classification task can be identified by means of feature selec- tion. Continuing our previous studies on multi-objective feature selection for music classification, in this work we measure an impact of evolutionary multi-objective fea- ture selection on classification performance and compare it to the baseline application without feature selection. As confirmed by statistical tests, the integration of evolu- tionary multi-objective feature selection leads to a significant increase of performance according to both evaluation criteria as well as to classification error. This holds for all four tested classification methods and six music categories.en
dc.identifier.isbn978-3-88579-614-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/20715
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2013 – Informatik angepasst an Mensch, Organisation und Umwelt
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-220
dc.titleMeasuring the performance of evolutionary multi-objective feature selection for prediction of musical genres and stylesen
dc.typeText/Conference Paper
gi.citation.endPage3025
gi.citation.publisherPlaceBonn
gi.citation.startPage3012
gi.conference.date16.-20. September 2013
gi.conference.locationKoblenz
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Vorschaubild nicht verfügbar
Name:
3012.pdf
Größe:
336 KB
Format:
Adobe Portable Document Format