Logo des Repositoriums
 

Expectation maximisation for sensor data fusion

dc.contributor.authorOpitz, Felix
dc.contributor.editorHochberger, Christian
dc.contributor.editorLiskowsky, Rüdiger
dc.date.accessioned2019-06-12T12:32:20Z
dc.date.available2019-06-12T12:32:20Z
dc.date.issued2006
dc.description.abstractThe expectation maximisation algorithm offers several applications in sensor data fusion. An overview of some of this applications and a short course in expectation maximisation algorithm and its properties is given. The expectation maximisation algorithm (EM) was introduced by Dempster, Laird and Rubin in 1977 [DLR77]. The basic of expextation maximisation is maximum likelihood estimation (MLE). In modern sensor data fusion expectation maximisation becomes a substantial part in several applications, e.g. multi target tracking with probabilistic multi hypothesis tracking (PMHT), target extraction within probability hypothesis density (PHD) filter, cluster analysis within multidimensional data association, or image computing.en
dc.identifier.isbn978-3-88579-187-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/23693
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2006 – Informatik für Menschen, Band 1
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-93
dc.titleExpectation maximisation for sensor data fusionen
dc.typeText/Conference Paper
gi.citation.endPage322
gi.citation.publisherPlaceBonn
gi.citation.startPage318
gi.conference.date2.-6. Oktober 2006
gi.conference.locationDresden
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI-Proceedings-93-45.pdf
Größe:
150.26 KB
Format:
Adobe Portable Document Format