Logo des Repositoriums
 
Zeitschriftenartikel

Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

De Gruyter

Zusammenfassung

The frequency of wildfires increases yearly and poses a constant threat to the environment and human beings. Different factors, for example surrounding infrastructure to an area (e.g., campfire sites or power lines) contribute to the occurrence of wildfires. In this paper, we propose using a Spatio-Temporal Knowledge Graph (STKG) based on OpenStreetMap (OSM) data for modeling such infrastructure. Based on that knowledge graph, we use the RDF2vec approach to create embeddings for predicting wildfires, and we align different vector spaces generated at each temporal step by partial rotation. In an experimental study, we determine the effect of the surrounding infrastructure by comparing different data composition strategies, which involve a prediction based on tabular data, a combination of tabular data and embeddings, and solely embeddings. We show that the incorporation of the STKG increases the prediction quality of wildfires.

Beschreibung

Böckling, Martin; Paulheim, Heiko; Detzler, Sarah (2023): Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs. it - Information Technology: Vol. 65, No. 4-5. DOI: https://doi.org/10.1515/itit-2023-0061. De Gruyter. ISSN: 2196-7032

Zitierform

Tags