Logo des Repositoriums
 

Approaches to feature selection for document categorization

dc.contributor.authorKou, Huaizhong
dc.contributor.authorGardarin, Georges
dc.contributor.authorZeitouni, Karina
dc.contributor.editorDüsterhöft, Antje
dc.contributor.editorThalheim, Bernhard
dc.date.accessioned2019-11-14T11:21:40Z
dc.date.available2019-11-14T11:21:40Z
dc.date.issued2003
dc.description.abstractOne of the problems faced by document categorization is that terms present in the collection of example documents are numerous. From the point of view of coherence between the models used in document categorization, we analyses the frameworks of both k-NN and NB categorization models and feature selection problem. Two algorithms CBA and IBA to feature selection are proposed. The empirical results done with k-NN and NB classifiers show that the coherence between models in the categorization system can bring benefits for performance.en
dc.identifier.isbn3-88579-358-X
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/29882
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofNatural language processing and information systems
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-29
dc.titleApproaches to feature selection for document categorizationen
dc.typeText/Conference Paper
gi.citation.endPage154
gi.citation.publisherPlaceBonn
gi.citation.startPage141
gi.conference.dateJune 2003
gi.conference.locationBurg (Spreewald)
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI-Proceedings.29-12.pdf
Größe:
133.14 KB
Format:
Adobe Portable Document Format