Logo des Repositoriums
 

What If We Encoded Words as Matrices and Used Matrix Multiplication as Composition Function?

dc.contributor.authorGalke, Lukas
dc.contributor.authorMai, Florian
dc.contributor.authorScherp, Ansgar
dc.contributor.editorDavid, Klaus
dc.contributor.editorGeihs, Kurt
dc.contributor.editorLange, Martin
dc.contributor.editorStumme, Gerd
dc.date.accessioned2019-08-27T12:55:26Z
dc.date.available2019-08-27T12:55:26Z
dc.date.issued2019
dc.description.abstractWe summarize our contribution to the International Conference on Learning Representations CBOW Is Not All You Need: Combining CBOW with the Compositional Matrix Space Model, 2019.We construct a text encoder that learns matrix representations of words from unlabeled text, while using matrix multiplication as composition function. We show that our text encoder outperforms continuous bag-of-word representations on 9 out of 10 linguistic probing tasks and argue that the learned representations are complementary to the ones of vector-based approaches. Hence, we construct a hybrid model that jointly learns a matrix and a vector for each word. This hybrid model yields higher scores than purely vector-based approaches on 10 out of 16 downstream tasks in a controlled experiment with the same capacity and training data. Across all 16 tasks, the hybrid model achieves an average improvement of 1.2%. These results are insofar promising, as they open up new opportunities to efficiently incorporate order awareness into word embedding models.en
dc.identifier.doi10.18420/inf2019_47
dc.identifier.isbn978-3-88579-688-6
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/24996
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-294
dc.subjectmachine learning
dc.subjectnatural language processing
dc.subjectrepresentation learning
dc.titleWhat If We Encoded Words as Matrices and Used Matrix Multiplication as Composition Function?en
dc.typeText/Conference Paper
gi.citation.endPage288
gi.citation.publisherPlaceBonn
gi.citation.startPage287
gi.conference.date23.-26. September 2019
gi.conference.locationKassel
gi.conference.sessiontitleData Science

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper3_24.pdf
Größe:
62.89 KB
Format:
Adobe Portable Document Format