A digital weed counting system for the weed control performance evaluation
dc.contributor.author | Pamornnak, Burawich | |
dc.contributor.author | Scholz, Christian | |
dc.contributor.author | Becker, Silke | |
dc.contributor.author | Ruckelshausen, Arno | |
dc.contributor.editor | Gandorfer, Markus | |
dc.contributor.editor | Hoffmann, Christa | |
dc.contributor.editor | El Benni, Nadja | |
dc.contributor.editor | Cockburn, Marianne | |
dc.contributor.editor | Anken, Thomas | |
dc.contributor.editor | Floto, Helga | |
dc.date.accessioned | 2022-02-24T13:34:45Z | |
dc.date.available | 2022-02-24T13:34:45Z | |
dc.date.issued | 2022 | |
dc.description.abstract | The weed counting method is one of the keys to indicate the performance of the weed control process. This article presents a digital weed counting system to use instead of a conventional manual counting system called “Göttinger Zähl- und Schätzrahmen” or “Göttinger Rahmen” due to the limitation of human counting on big-scale field experiment areas. The proposed method demonstrated on the maize field consists of two main parts, a virtual weed counting frame and a weed counting core, respectively. The system was implemented as a mobile application for the smartphone (Android) with server-based processing. The pre-processed image on the mobile phone will be sent to the weed counting core based on the pre-trained convolution neural network model (CNN or deep learning) on the server. Finally, the number of detected weeds will be sent back to the mobile phone to show the results. In the first implementation, 100 frames on a 1-hectare field area were evaluated. The absolute weed counting errors were categorized into three groups, A-Group (0-10 weeds error) achieves 73 %, B-Group (11-20 weeds error) achieves 17 %, and C-Group (21-30 weeds error) achieves 10 %, respectively. For overall performance, the system achieves the = 0.97 from the correlation and 12.8 % counting error. These results show the digital version of “Göttinger Rahmen” has the potential to become a practical tool for weed control evaluations. | en |
dc.identifier.isbn | 978-3-88579-711-1 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/38398 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-317 | |
dc.subject | Göttinger Rahmen | |
dc.subject | weed counting | |
dc.subject | mobile application | |
dc.subject | field experiment | |
dc.subject | image processing | |
dc.subject | data labeling | |
dc.subject | deep learning | |
dc.title | A digital weed counting system for the weed control performance evaluation | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 212 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 207 | |
gi.conference.date | 21.-22. Februar 2022 | |
gi.conference.location | Tänikon, Online |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- GIL2022_Pamornnak_207-212.pdf
- Größe:
- 1.03 MB
- Format:
- Adobe Portable Document Format