Logo des Repositoriums
 

NFDI4Energy Task Area 4: FAIR Data for Energy System Research

dc.contributor.authorWein, Amanda
dc.contributor.authorReinkensmeier, Jan
dc.contributor.authorWeidlich, Anke
dc.contributor.authorLilliestam, Johan
dc.contributor.authorHagenmeyer, Veit
dc.contributor.authorLehnhoff, Sebastian
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorWohlgemuth, Volker
dc.date.accessioned2023-11-29T14:50:18Z
dc.date.available2023-11-29T14:50:18Z
dc.date.issued2023
dc.description.abstractThe NFDI4Energy consortium will create a research data infrastructure for energy system research, emphasizing the openness and FAIRness of data and models in this research domain. Within the consortium, Task Area 4 focuses on the development of resources and services that will provide a semantic layer for the overall platform built by NFDI4Energy. The team of this Task Area will produce artifacts including a domain ontology, metadata standards, a knowledge graph, a Persistent Identifier service, and integration infrastructure to join these artifacts to the NFDI4Energy platform.en
dc.identifier.doi10.18420/inf2023_106
dc.identifier.isbn978-3-88579-731-9
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43026
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2023 - Designing Futures: Zukünfte gestalten
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-337
dc.subjectFAIR Data
dc.subjectMetadata
dc.subjectOntologies
dc.subjectEnergy System Research
dc.subjectResearch Data Infrastructure
dc.titleNFDI4Energy Task Area 4: FAIR Data for Energy System Researchen
dc.typeText/Conference Paper
gi.citation.endPage944
gi.citation.publisherPlaceBonn
gi.citation.startPage937
gi.conference.date26.-29. September 2023
gi.conference.locationBerlin
gi.conference.sessiontitleÖffentliche Infrastruktur - Research Data Infrastructures for Data Science and AI (RDI4DataScience)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
RDI4DS_TA4Paper_final.pdf
Größe:
593.63 KB
Format:
Adobe Portable Document Format