Logo des Repositoriums
 

Using a probabilistic hypothesis density filter to confirm tracks in a multi-target environment

dc.contributor.authorHorridge, Paul
dc.contributor.authorMaskell, Simon
dc.contributor.editorHeiß, Hans-Ulrich
dc.contributor.editorPepper, Peter
dc.contributor.editorSchlingloff, Holger
dc.contributor.editorSchneider, Jörg
dc.date.accessioned2018-11-27T10:00:09Z
dc.date.available2018-11-27T10:00:09Z
dc.date.issued2011
dc.description.abstractIn this paper, we aim to perform scalable multi-target particle filter tracking. Previously, the authors presented an approach to track initiation and deletion which maintains an existence probability on each track, including a “search track” which represents the existence probability and state distribution of an unconfirmed track. This approach was seen to perform well even in cases of low detection probability and high clutter levels, but modelling all unconfirmed tracks by a single-target search track can be problematic if more than one target appears in a sensor's field of view at the same time. To address this, we replace the search track with a Probabilistic Hypothesis Density (PHD) filter which can maintain a density over several unconfirmed tracks. A method is proposed to derive probabilities of measurements originating from targets, allowing us to confirm tracks when these probabilities reach a threshold. We observe that in so doing, we implicitly solve the track-labelling challenge that otherwise exists with PHD filters. This is shown to maintain good tracking performance for highclutter, low-detection scenarios while addressing the shortcomings of the single-target search track approach. We also show results from a scenario with obscured regions where the target cannot be detected, and show that targets can be tracked through the obscurations.en
dc.identifier.isbn978-88579-286-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/18806
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2011 – Informatik schafft Communities
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-192
dc.titleUsing a probabilistic hypothesis density filter to confirm tracks in a multi-target environmenten
dc.typeText/Conference Paper
gi.citation.endPage492
gi.citation.publisherPlaceBonn
gi.citation.startPage492
gi.conference.date4.-7. Oktober 2011
gi.conference.locationBerlin
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
492.pdf
Größe:
20.66 KB
Format:
Adobe Portable Document Format