Prediction of air pollution with machine learning
dc.contributor.author | Schmitz, Christian | |
dc.contributor.author | Serai, Dhiren Devinder | |
dc.contributor.author | Escobar Gava, Tatiane | |
dc.contributor.editor | Meyer, Holger | |
dc.contributor.editor | Ritter, Norbert | |
dc.contributor.editor | Thor, Andreas | |
dc.contributor.editor | Nicklas, Daniela | |
dc.contributor.editor | Heuer, Andreas | |
dc.contributor.editor | Klettke, Meike | |
dc.date.accessioned | 2019-04-15T11:40:38Z | |
dc.date.available | 2019-04-15T11:40:38Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Cities worldwide are facing air quality issues, leading to bans of vehicles and lower quality of life for inhabitants. We forecast the air quality for Stuttgart based on expected weather condition. For that purpose, we extract, cleanse, and integrate the DHT22 and SDS11 sensors’ data to feed two different machine learning models for predicting the particulate matter values for the near future. | en |
dc.identifier.doi | 10.18420/btw2019-ws-34 | |
dc.identifier.isbn | 978-3-88579-684-8 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/21822 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik, Bonn | |
dc.relation.ispartof | BTW 2019 – Workshopband | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) – Proceedings, Volume P-290 | |
dc.subject | Data Science Challenge | |
dc.subject | Big Data Analytics | |
dc.title | Prediction of air pollution with machine learning | en |
gi.citation.endPage | 304 | |
gi.citation.startPage | 303 | |
gi.conference.date | 4.-8. März 2019 | |
gi.conference.location | Rostock | |
gi.conference.sessiontitle | Data Science Challenge 2019 |
Dateien
Originalbündel
1 - 1 von 1