Logo des Repositoriums
 

Enhanced execution trace abstraction approach using social network analysis methods

dc.contributor.authorWang, Ji
dc.contributor.authorEzzati-Jivan, Naser
dc.contributor.editorKelter, Udo
dc.date.accessioned2022-11-24T10:42:05Z
dc.date.available2022-11-24T10:42:05Z
dc.date.issued2020
dc.description.abstractIn this paper, we propose an improvement in system execution tracing by applying social network analysis techniques on the trace data. We perform a 3-step analysis: collection of trace data on operating system kernel; community analysis on the data; and PageRank algorithm within each community. The proposed analysis focused on the following problems: useless information contained in the data and the enormous size of the data. We propose two use cases: one on kernel trace filtering and the other on virtual machine clustering. Our evaluation shows that the proposed method provided a concise and more comprehensive view of the trace data. This can help shorten the time and assist in building infrastructural functions in analyzing system execution.en
dc.identifier.pissn0720-8928
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39792
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftwaretechnik-Trends Band 40, Heft 3
dc.relation.ispartofseriesSoftwaretechnik-Trends
dc.subjectsocial network analysis
dc.subjecttracing
dc.subjecttrace data virtual machine clustering
dc.titleEnhanced execution trace abstraction approach using social network analysis methodsen
dc.typeText/Conference Paper
gi.citation.endPage60
gi.citation.publisherPlaceBonn
gi.citation.startPage58
gi.conference.date44147
gi.conference.locationLeipzig
gi.conference.sessiontitleSymposium on Software Performance (SSP)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
SSP2020_Wang.pdf
Größe:
1.07 MB
Format:
Adobe Portable Document Format