Logo des Repositoriums
 

Compressed Models Decompress Race Biases: What Quantized Models Forget for Fair Face Recognition

dc.contributor.authorPedro C. Neto, Eduarda Caldeira
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira, Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2023-12-12T10:46:47Z
dc.date.available2023-12-12T10:46:47Z
dc.date.issued2023
dc.description.abstractWith the ever-growing complexity of deep learning models for face recognition, it becomes hard to deploy these systems in real life. Researchers have two options: 1) use smaller models; 2) compress their current models. Since the usage of smaller models might lead to concerning biases, compression gains relevance. However, compressing might be also responsible for an increase in the bias of the final model. We investigate the overall performance, the performance on each ethnicity subgroup and the racial bias of a State-of-the-Art quantization approach when used with synthetic and real data. This analysis provides a few more details on potential benefits of performing quantization with synthetic data, for instance, the reduction of biases on the majority of test scenarios. We tested five distinct architectures and three different training datasets. The models were evaluated on a fourth dataset which was collected to infer and compare the performance of face recognition models on different ethnicity.en
dc.identifier.isbn978-3-88579-733-3
dc.identifier.issn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43267
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-339
dc.subjectSyhtetic data for biometrics
dc.subjectComputational efficiency in biometrics
dc.titleCompressed Models Decompress Race Biases: What Quantized Models Forget for Fair Face Recognitionen
dc.typeText/Conference Paper
mci.conference.date20.-22. September 2023
mci.conference.locationDarmstadt
mci.conference.sessiontitleRegular Research Papers
mci.reference.pages200-208

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
LNI_063.pdf
Größe:
195.88 KB
Format:
Adobe Portable Document Format