Logo des Repositoriums
 

From Physical to Virtual: Leveraging Drone Imagery to Automate Photovoltaic System Maintenance

dc.contributor.authorLowin, Maximilian
dc.contributor.authorKellner, Domenic
dc.contributor.authorKohl, Tobias
dc.contributor.authorMihale-Wilson, Cristina
dc.date.accessioned2021-12-14T10:58:00Z
dc.date.available2021-12-14T10:58:00Z
dc.date.issued2021
dc.description.abstractOptimizing the maintenance of large-scale infrastructure can be a significant cost driver for small and medium-sized enterprises (SMEs). This paper presents a feasible approach to combine data from real-world physical structures collected through an automated maintenance process with cloud-based AI services to generate a meaningful virtual representation of such structures. We use photovoltaic systems as an exemplary physical structure and thermal imaging, collected through scheduled drone monitoring. With help of these unstructured data sources, we demonstrate our approach's applicability. Our solution artifact provides a lightweight AI application that is adoptable for other problem spaces, enabling an easier knowledge transfer from research to SMEs. By combining Cloud Computing with Machine Learning, the artifact identifies present and emerging damages of physical objects. It provides a virtual representation of the object's state and empowers a meaningful visualization.en
dc.identifier.doi10.18420/informatik2021-099
dc.identifier.isbn978-3-88579-708-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37769
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-314
dc.subjectDigital Twin
dc.subjectMachine Learning
dc.subjectPredictive Maintenance
dc.subjectPhotovoltaic System
dc.subjectInternet of Things
dc.subjectProcess Automation
dc.subjectNeural Networks
dc.subjectVisualization
dc.titleFrom Physical to Virtual: Leveraging Drone Imagery to Automate Photovoltaic System Maintenanceen
gi.citation.endPage1211
gi.citation.startPage1201
gi.conference.date27. September - 1. Oktober 2021
gi.conference.locationBerlin
gi.conference.sessiontitleWorkshop: Künstliche Intelligenz für kleine und mittlere Unternehmen (KI-KMU 2021)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
N1-5.pdf
Größe:
968.19 KB
Format:
Adobe Portable Document Format