Logo des Repositoriums
 

Preparing clinical ophthalmic data for research application

dc.contributor.authorRößner, Miriam
dc.contributor.authorKahl, Stefan
dc.contributor.authorEngelmann, Katrin
dc.contributor.authorKowerko, Danny
dc.contributor.editorEibl, Maximilian
dc.contributor.editorGaedke, Martin
dc.date.accessioned2017-08-28T23:47:46Z
dc.date.available2017-08-28T23:47:46Z
dc.date.issued2017
dc.description.abstractThis paper presents an analysis of clinical examination, diagnostic and patient data belonging to persons with eye diseases like age-related macular degeneration (AMD). Our purpose is to investigate potential correlations of extracted features to discover their impacts on the disease. This is a first step to the predictability of the progression of AMD based on a heterogeneous data set. We focus on the visual acuity as reasonable indicator for the progression of this disease and analyse its temporal trend to classify patients in winners, stabilisers and losers.We describe the retrieval of textual medical reporting data for optical coherence tomography images and evaluate the machine-readable categorisation of these texts. Additionally, we address the topic of ethical guidelines for the work with patients’ data and discuss the potential and limitations of our data set in the context of obtaining structured (mass) data for training neural networks as future perspective.en
dc.identifier.doi10.18420/in2017_222
dc.identifier.isbn978-3-88579-669-5
dc.identifier.pissn1617-5468
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2017
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-275
dc.subjectAge-related macular degeneration
dc.subjectOphthalmology
dc.subjectText mining
dc.subjectData visualisation
dc.subjectAMD progression prediction
dc.titlePreparing clinical ophthalmic data for research applicationen
gi.citation.endPage2240
gi.citation.startPage2231
gi.conference.date25.-29. September 2017
gi.conference.locationChemnitz
gi.conference.sessiontitleDeep Learning in heterogenen Datenbeständen

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B29-9.pdf
Größe:
721.05 KB
Format:
Adobe Portable Document Format