Logo des Repositoriums
 

Exploiting Web Images for Moth Species Classification

dc.contributor.authorBöhlke,Julia
dc.contributor.authorKorsch, Dimitri
dc.contributor.authorBodesheim, Paul
dc.contributor.authorDenzler, Joachim
dc.date.accessioned2021-12-14T10:57:26Z
dc.date.available2021-12-14T10:57:26Z
dc.date.issued2021
dc.description.abstractDue to shrinking habitats, moth populations are declining rapidly. An automated moth population monitoring tool is needed to support conservationists in making informed decisions for counteracting this trend. A non-invasive tool would involve the automatic classification of images of moths, a fine-grained recognition problem. Currently, the lack of images annotated by experts is the main hindrance to such a classification model. To understand how to achieve acceptable predictive accuracies, we investigate the effect of differently sized datasets and data acquired from the Internet. We find the use of web data immensely beneficial and observe that few images from the evaluation domain are enough to mitigate the domain shift in web data. Our experiments show that counteracting the domain shift may yield a relative reduction of the error rate of over 60%. Lastly, the effect of label noise in web data and proposed filtering techniques are analyzed and evaluated.en
dc.identifier.doi10.18420/informatik2021-038
dc.identifier.isbn978-3-88579-708-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37702
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-314
dc.subjectWeb Images
dc.subjectWebly Supervised Learning
dc.subjectLabel Noise
dc.subjectNoise Filtering
dc.subjectSpecies Classification
dc.subjectFine-grained Recognition
dc.subjectMoth Scanner
dc.titleExploiting Web Images for Moth Species Classificationen
gi.citation.endPage498
gi.citation.startPage481
gi.conference.date27. September - 1. Oktober 2021
gi.conference.locationBerlin
gi.conference.sessiontitleWorkshop: Computer Science for Biodiversity (CS4BIODiversity)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
D1-5.pdf
Größe:
879.05 KB
Format:
Adobe Portable Document Format